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Abstract 

Several issues pertaining to the application of the QCD-based parton model to new 
physics processes involving heavy partons are described and quantitatively studied using 
charged Higgs boson production as a prime example. The naive parton model predictions 
are found to over-estimate the actual cross-section by a factor of 2 to 5, depending on the 
top-quark and Higgs masses. The role of the top quark as a “parton” is examined by a 
detailed study of the cancellation between the straight parton model contribution and a 
cubtracrion term required by QCD corrections. The accuracy of the commonly used zero- 
mass method for evaluating the first-order QCD correction is assessed (in light of the 
potentially large mass of the top quark) by a quantitative analysis of the cancellation of 
mass singularities between the correction terms. A pragmatic procedure for calculation 
based on a renormalization scheme without the heavy quark-parton is formulated and com- 
pared with the usual perturbative QCD formalism. The energy ranges over which heavy 
quarks (or other particles) should or should not be naturally treated as “partons” are delin- 
eated, Properly evolved parton distribution functions relevant to the specific renormaliza- 
tion schemes considered are employed for all the numerical studies in order to ensure con- 
sistency in the QCD framework. 
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I. INTRODUCTION 

The parton model has been remarkably successful in describing a wide variety of 
high energy processes involving some energy scales much larger than the masses of the 
known particles and the partons themselves. The theoretical basis of the parton model is 
provided by perturbative Quantum Chromodynamics (QCD).’ In recent years, increasing 
attention has been directed toward applications of the “QCD-based parton model” to high 
energy processes involving heavy particles and heavy partons. Here the theory and the 
phenomenology are not as straightforward as for those involving only light (i.e. massless) 
particles such as embodied in the conventional parton model formalism. In studying 
physics phenomena beyond the currently available energy range these processes involving 
heavy particles are clearly of primary interest both within and beyond the Standard Model. 
A case in point is the production of Higgs particles, for which the heavy quarks play an 
important role.2’3 

This work consists of a systematic study of the production of a heavy charged Higgs 
particle from initial state heavy quarks (in particular, the top-quark) as well as light partons 
(quarks and gluons). This process is of intrinsic interest;4’5 and it provides a useful 
example to explore several important generic problems associated with new physics 
phenomena involving heavy particles. We shall study in detail the cancellations which take 
place between the zeroth order parton model contribution, the firsf order QCD correction to 
the hard cross-section, and the associated sublraclion lerm which eliminates unwanted 
double-counting and removes potential mass-singularities. The near cancellation between 
the zeroth-order and the subtraction terms yields true cross-sections a factor of 2 to 5 
(depending on the top and Higgs mass values) smaller than the straight parton-model 
results. This leads to the question: when is a heavy quark nol (1 parfon? Furthermore, a 
systematic study of the cancellation of mass-singularities between the first-order and the 
subtraction terms provides a quantitative assessment of the accuracy of the commonly used 
zero-mass method for calculating the QCD corrections to the cross-section. (This problem 
is of obvious concern in light of the potentially heavy mass of the top quark.) We shall 
examine a distinct renormalization scheme for calculating QCD-based parton model predic- 
tions which naturally leave out the heavy quark as a parton. The numerical results on the 
actual range of validity of the various calculational schemes are important for many prac- 
tical applications to new heavy particle production processes.7 

The following sections (Part II) summarizes the general theoretical background. We 
discuss, in turn, (A) The “QCD-based Parton Model”, (B) Leading Contributions to the 
Hard Cross-section, (C) Calculation of the QCD Correction Terms, (D) Elimination of 
Double Counting and Threshold Behavior, (E) Detailed Formulas for the Physical Cross- 
section, and (F) the Cancellation of Mass-singularities. Part III consists of concrete 
numerical results on the production cross-section, exploring its dependences on the 
unknown top quark mass, and on the renormalization scheme dependences which provide 
anwsers to the issues described in the previous paragraph. Specifically, the sub-sections 
are: (A) Threshold Behavior and the Cancellation of the Top-quark-parton Contribution, 
(B) Cancellation of Mass-singularities and Top-mass Dependence of the Hard Cross-section, 
and (C) A Pragmatic Renormalization Scheme with no Heavy Partons - Advantages and 
Limitations. 



3 

II. THEORETICAL BACKGROUND 

We summarize those theoretical features of the QCD-based parton model that are 
relevant for its application to the production of heavy particles (which abound in all exten- 
sions of the Standard Model), especially those initiated by partons of non-negligible mass. 
The theoretical formulas introduced here will be used for numerical studies to be described 
in Part III. The results presented there will serve as concrete illustrations of the theoretical 
ideas discussed in this part and will specify the range of validity of previous qualitative 
expectations based on asymptotic considerations. 

A. THE QCD-BASED PARTON MODEL 

Consider the inclusive production of a charged Higgs particle H+ in the collision of 
two high energy hadrons A, B: 

A+B-H+tX (1) 

where, as usual, X stands for “anything”. We shall assume the Higgs coupling to quark- 
partons is given by the simple vertex expression 

I- = 2 [gL(l-r5) + gR(1+Y5)l 

where the overall coupling parameter gw is the familiar gauge coupling constant of the 
SU(2) weak isospin. Since we shall focus on general features of heavy particle production 
in the parton model rather than particulars of Higgs models, the only detail of the 
couplings gL and gR we shall specify is that they are proportional to the mass of the quarks 
(scaled by MW, say). Because of this last assumption, the heavy quarks play the dominant 
role in the Higgs production mechanism. 

The QCD-based parton model is based on factorization theorems which, in the 
current case, can be stated succinctly as (cf. Fig. 1) 

where a,b are parton labels which must be summed over, (fAa(x, Q)) are parton distribu- 
tion functions of parton species “a” in hadron “A”, 12ab+H) are hard scatterina cross- 
sections involving only partons, and @ represents a convolution integral - the precise form 
of which depends on the particular cross-section in question (e.g., ototal, do/dy, do/dpT, 
d&dydp,, . . . etc.). We shall present the precise expressions and detailed discussions in 
Section 1I.E. The pictorial representation of this factorized parton model formula is given 
in Fig. 1, where the II mark on the parton lines signifies that they are on-the-massshell and 
collinear to their respective parent-hadrons. The validity of the factorization theorem at 
high energies, Eq.(3), has been established to various degrees of rigor for different pro- 
cesses and for different kinematic regimes.’ We shall assume it holds for the present case 
where the masses of the heavy quarks are taken to be much smaller than the overall center- 
of-mass energy 4s. 
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The proof of the factorization theorem relies on perturbation theory. The factors on 
the right-hand side of Eq.(3) are defined in terms of Green’s Functions which have the 
well-known attractive phy$cal interpretations of parton distribution functions (f) and hard 
scattering cross-sections (0). Precise definitions of these quantities are possible only 
within a given renormalization scheme R, and each quantity so defined also depends in 
general on an arbitrary Ienormalization scale parameter, usually denoted by p. The hard 
scattering cross-section LT can be reliably calculated in perturbation theory provided the 
scale parameter p is chosen to be of the same order as a large energy scale relevant for the 
hard process, say MH in the case under consideration. If only the lowest order term is kept 
in Eq.(3), then we obtain the naive parton model (with scale dependent parton distribution 
functions), and the question of choice of renormalization scheme (R) may be, and usually 
is, side-stepped. However, for the production of heavy particles via heavy partons the 
contributions from the naive “lowest order” diagram and “first order” corrections can be 
comparable for easily understandable reasons (cf. Ref. 6, and discussions on Fig. 2 in the 
next section). Thus, it becomes essential to specify the renormalization scheme that is used 
to define and calculate the relevant quantities which enter Eq.(3). It is well-known, of 
course, that even for processes involving only light particles any calculation of non-leading 
corrections, such as the numerically significant “K-factor” in Drell-Yan processes, requires 
a careful consideration of the choice of R. The case involving heavy particles poses, 
however, a different set of choices to be made and questions to be answered. 

B. LEADING CONTRIBUTIONS TO THE HARD CROSS-SECTION 

In our example, the “zeroth order” process contributing to the hard scattering comes 
from t+K- H+ (cf. FigJa), assuming the usual quark species. The next order contribu- 
tions are due to g+6+e+H+ (Fig.2b) and t+g+b+H+ (Fig.2c). If the t-quark represents 
the only “heavy parton”, the relative order of magnitudes of the contributions from the 
three processes (Figs. 2a, 2b and 2c) to the overall cross-section (Eq.(3)) are expected to be 
1 : I : 01~. Thus the contribution from Fig.Zc can be neglected in practice. This result fol- 
lows from the observation that, to a good approximation, the heavy quark distribution 
f:(x) can be obtained from the (first order) splitting of the gluon; it should be of order 
01~ with respect to the gluon distribution up until the full QCD evolution takes effect at an 
energy scale which is orders of magnitude larger than mt. On the other hand, “light quark” 
distributions are generally considered to be of the same order of magnitude as the gluon 
distribution, since their masses are taken to be effectively zero. The case of the b-quark 
lies somewhere between these two extremes. For simplicity , we shall assume that the b- 
quark can also be treated as “light”, hence its distribution function inside the hadron is of 
the same order of magnitude as that of the other light partons. A large part of this paper 
will be devoted to quantifying the reliability of this conventional wisdom. 

The necessity to include the “first-order” process g+l%f+H+ along with the 
“zeroth-order” one, t+6dH+, raises questions of double counting: the diagram Fig.2b con- 
tributes partially to the t-quark distribution function which is already included in the 
zeroth order calculation. This occurs when the intermediate t-quark line is on the mass- 
shell and collinear with the gluon line (hence, it corresponds to a real parton out of the 
gluon). This is also the configuration which gives rise to singularities of the scattering 
cross-section in the limit m~/s~O (hence the terminology mass sinaularities). An essential 
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feature of the factorization theorem, Eq.(3), is that the hard cross-section lGabdH) is 
free from such mass singularities. Thus, the proper application of the “QCD-based parton 
model” requires a definite procedure to remove the mass-singularities; this, in turn, leads to 
the resolution of the double-counting problem. 

C. CALCULATION OF THE QCD CORRECTION TERMS 

Let oab+H be the full cross-section for the partonic process a+bdH+X which is 
obtained by summing over Feynman diagrams such as those given in Fig. 2. We can deter- 
mine the corresponding hard cross-section Bab-,H by the observation that the full 
partonic cross-section oab+H satisfies the same factorization theorem, Eq.(3), as the 
physical hadronic process (1). In explicit terms, we have 

‘lab+H , - xc d f; @ ,Gd+H @ fb” (4) 

where f,” . ts the distribution function of the c-parton inside the a-parton. This equation 
must hold order by order in perturbation theory - that is how the factorization theorem is 
proven in the first place. Since rules for calculating ( fa” ) and ( oab-H ) in perturbation 
theory are fairly well-known, Eq.(4) can be turned around to solve for the desired hard 
cross-sections sabdH. 

In lowest order perturbation theory (zeroth order in as), 

OC 
f (x) - 6= 6(x-l) 

a a 

Eq.(4) then implies 

To first order in ~1~. we have 

1 
uab+H 

A1 +;o 
- Oab-tH ad+H 

@ Ifd + lfC @ so 
b a cb-tH 

(5) 

(7) 

where the left-superscripts on the distribution functions, as well as the right-superscripts 
on the cross-sections, specify the order to which these quantities are to be calculated in 
perturbation theory. Inverting this equation and using Eq.(6), we obtain 

^1 1 0 
Oab+H - Oab-tH - Oad-rH CZJ lfd lfC @ a0 b- a cb-tH (8) 

F;:‘L”” all the terms on the right-hand side are calculable, hence the hard cross-section 
uab-tH is well defined. In particular, 

Al 1 
Og&H lft @ Do- = Og&H - g tb+H (9) 

Since there is no zeroth order process involving a gluon, the middle term in Eq.(8) is 
absent. Here lfgt is the first-order perturbatively calculated t-quark distribution inside the 
gluon. 
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Note that the second term on the right-hand side of Eq.(9) (to be called the 
subtraction term) has just the collinear configuration (signified by the convolution opera- 
tion) discussed in Section 1I.B above. This can be represented graphically as shown in Fig.3 
where the ” sign on the t-quark propagator again signals that the momentum of that line is 
on-the-mass-shell and collinear to that of the parent gluon. This term represents the 
overlap between the first-order and the zeroth-order contributions to the overall cross- 
section (which requires its subtraction by the QCD formalism given above). This fact will 
become obvious in the next section (1I.D). The subtraction term also serves to remove the 
mass-singularity of the first order cross-section formula in the limit mt + 0. This will be 
demonstrated in Section 1I.F. 

D. ELIMINATION OF DOUBLE COUNTING AND THRESHOLD BEHAVIOR 

Substituting Eqs.(6) and (9) in Eq.(3) we obtain for the overall cross-section 

OAB+H @fbg+f;@& @fbg 
gb+H 

where + (A * B) (10) 

p I lft @ fg 
A g A 

(11) 

The three terms on the right-hand side of Eq.(lO) correspond to the “zeroth order”, the 
“subtraction”, and the “first order” terms respectively. 

The particular way we wrote the subtraction term makes explicit its relationship to 
the zeroth order term on the right-hand side of Eq.(lO). f t in Eq.(ll) has a simple 
physical interpretation: it is the t-quark distribution in A resu tmg from the splitting of the f. 
gluons in A. The first two terms on the right-hand side of Eq.(lO) can be grouped together 
to read: 

OAB+H 
= [f;- i~~~~~~~~~fbg+f~~~~~+~~fbg+ (‘4-B) (12) 

We see that, by requiring the presence of the subtraction term, the QCD formalism explic- 
itly retnoyes from the leading term the first-order QCD contribution to the on-shell 
collinear parton distribution function when the full first-order correction term is added. 
This avoids the potential double counting in a simple-minded application of the naive 
parton model. One can see this point graphically by attaching Fig.3 to Fig.1 and comparing 
with the corresponding contribution from Fig.Za. 

We anticipate that the subtration term nearly cancels the zeroth order term for 
energy scales just above the top-quark mass. This is because the t-quark distribution 
function fAt 1s well approximated by the perturbative distribution EAt at energy scales 
of this order. The cancellation of the top quark-parton contribution (Fig.Za) by the sub- 
straction term effectively removes the t-quark as a “parton”. In this region the true pro- 
duction cross-section will be close to that given by the first order term alone. However, it 
is not obvious what is the extent of the energy range over which this is true. We shall 
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examine this problem numerically in Section 1II.A. In view of this cancellation, it is 
natural to ask whether one can legitimately avoid calculating the first two terms over this 
region for all practical purposes. This question will be addressed in Section 1II.C where a 
pragmatic renormalization scheme is introduced, and both its usefulness and limitations will 
be discussed. 

E. DETAILED FORMULAS FOR THE PHYSICAL CROSS-SECTION 

We now give the explicit expressions for the unabbreviated formulas. We shall start 
with the formula for the total cross-section, which has the basic form 

o~~(s,...) = j- dcadEb f;(E,) uab 

+ (A - B) (13) 

[cf. Eq.(3)], where f9r simplicity we have dropped the symbols (-H) after the initial parti- 
cle labels on o and 0. Applying this to the right-hand side of Eq.(lO), and working out 
the appropriate one- and two-particle kinematics, we can uncover the contributions of the 
three terms to the differential cross-section da/dy, where y is the rapidity of the Higgs 
particle: 

(i) for the zeroth order term we obtain: 

d 0 _ ft @ doO- @ fb 
dyO~8 A dy tb B 

(14) 

f;'%,MH' + V-B)] 

where 

(ii) for the first order hard scattering term the result is: 
‘) 

d 1 
;i;OAB = f: @ dy gb B - do - @ fb 

(15) 

, 
de dE, 

~~~~~dp~Sls(E,-X,)(Fb-Xb)- 
a b 

m~-p;l~[f~(EJlT -l*f;(t,) +(A-B)l 
& 

where the squared reduced matrix element is given by 

n I$- iii t$ la: 
lT,~12 = 2s n 11 -2531 - n )I 

(17) 
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n n n 
and (s , t ,u) are the Mandelstam variables for the partonic process g+6 -4 
H++t. 

(iii) In order to compute the subtraction term in Eq.(lO) [cf. also Eq.(9)], we need the 
perturbative distribution function ‘ft (x,p). This is obtained by evaluating the Feynman 
diagrams contributing to the t-quarkgdistributions inside the gluon. (Cf. Ref. 8 for precise 
definitions and Feynman rules.) As divergent integrals are encountered in these perturba- 
tive calculations, one must apply a subtraction to obtain the renormalized parton distribu- 
tion function. Using MS-bar subtraction, we find 

2 2 

lf;(x. 
5 

P) = ~Hlog - 
P2 

+1) (1-2x + 2x2) + 0 (&I 
P2 

Thus the term singular in the mt + 0 limit is, 

a 
-t 
f*'", PI = 2 - log $ . j:‘F (l-2( + 2<2) fg(z p) 

A E’ P 
(19) 

and the subtraction term in Eq. (IO) is 

- & F,&; + p,;)[+y f$$ f;‘“b, f$,’ + (A+‘B)l (20) 

It is easily verified that the explicit formula for f 
4 

t, Eq.(l9), is an approximate solution 
to the QCD evolution equation (to order QJ for fA , provided log(mJp) is not too large, as 
anticipated in Sec.1I.D. 

This completes the detailed formulas for calculating the inclusive y-distribution of 
the Higgs particle. The physical cross-section, according to Eq.(lO), is the sum of Eqs.( 14) 
and (16) with Eq.(ZO) subtracted. We note that these individual terms are renormalization 
scheme dependent. The net result, however, should be independent of the choice of the 
renormalization scheme. The relative sizes of the various terms can vary considerably from 
scheme to scheme. We shall evaluate these terms numerically in Part III and discuss the 
relative merit of renormalization schemes in Section IILC. 

F. THE CANCELLATION OF MASS-SINGULARITIES 

It is not hard to see that the first order cross-section 0’ and the subtraction term 2 
both have mass singularities. We would like to check exp?icitly that their singular terms 
cancel in Eqs.(9) and (IO), so that the hard cross-section ag6 as well as the physical 
cross-section oAB are well-behaved in the limit mt -+ 0. 

The (logarithmic) mass singularity in the subtraction term us, as given by Eqs(l9) 
and (20) is manifest. This is not so in the first order cross-section term 0’; the singularity 
there arises implicitly from the fact that the squared matrix element, Eq.(l7), contains the 
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factor (rut-u) * -’ which diverges as pT-0 in the limit mt -0. It is not hard to extract 
this singular term from Eqs.(l6) and (17) - one can use the &function in Eq.( 14) to do the 
Eb-integration, then Taylor-expand all functions in the integrand ;hich ;rtzregular in pT 
[in the mt ,+O limit] with the exception of the singular factor (mt + pT) [arising 
from (IU:-U)-‘] which is treated exactly. One can verify explicitly 

lim mt”o (21) 

(The detailed expression on the right-hand side is not significant.) Thus the subtraction 
term removes the mass singularity in the first order cross-section (in the limit mt+O) as 
we11 as avoids the double counting of the naive parton model picture. 

Although (do’/dy - dds/dy) is regular in the limit mt - 0, it is not independent of 
mt. In particular, if mt is not too small compared to the large energy scales of the prob- 
lem, such as MH, this quantity may differ substantially from its value in the mt-+O limit. 
When the condition mt/MH<<l is satisfied, this correction term to the lowest order for- 
mula will be well-approximated by its zero-mass limit. In that case, it is the common 
practice to calculate dolAB/ d directly in the m,=O theory using minimum subtraction to y 
regulate the divergence and to remove the mass-singularity.5 (This obviates the need to 
calculate the substraction term separately.) The equivalence of this method to the mt-+O 
limit of the general procedure described in this paper is usually not explicitly demonstrated. 
In any case, if mt/MH is not very small the zero-mass method is not relevant a priori. 
This is important if the top quark is, indeed, heavy as al1 current experimental results seem 
to indicate. We shall study this point numerically in Section 1II.B to determine the range of 
validity of the zero-mass method. 

III. NUMERICAL RESULTS 

Numerical calculations presented below are based on the formalism of the previous 
section using parton distribution functions generated by a QCD evolution program with a 
variety of input top quark mass and other parameters as necessary for the analyses. It is 
essential to generate the appropriate parton distribution sets for the various aspects of this 
investigation accordin to the rules of QCD rather than to use the commonly available 
fixed-parameter sets 45 ’ because the latter were not designed to incorporate variable heavy 
quark masses and renormalization-scheme dependence both of which are of primary 
importance to our study. For definiteness, all calculations presented below are done for 
proton-proton scattering at a total CM energy of 40 TeV. 

A. THRESHOLD BEHAVIOR AND THE CANCELLATION OF THE TOP-QUARK- 
PARTON CONTRIBUTION 

In Figs.(4a-c)) we show the differential cross-section of charged Higgs production at 
rapidity y = 0 of the produced Higgs particle plotted as functions of Higgs mass for three 
values of assumed top quark masses - 40, 80, and 300 GeV respectively. The calculation is 
performed with parton distributions generated in the conventional scheme IO with all six 
quark flavors active above their mass thresholds. The same top quark mass enters the 
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QCD-evolved parton distribution functions and the hard cross-section calculations. In the 
hard cross-section calculation, the top quark mass is kept explicitly in both the first-order 
and the subtraction terms. (H ence, we are not using the zero-mass approximation as most 
similar works5 do.) Initial parton distributions at Q. = 2.25 GeV are taken from EHLQ.4 

Four curves are displayed in each graph corresponding to contributions from the 
“zeroth-order” (labelled SIG-O), the “first-order” (SIG-l), the subtraction term (SUBTR), 
and the “true” cross-section (SIG-T), i.e. the sum of the three. The general feature shared 
by the three graphs is that, as anticipated in Section ILD, the zeroth-order contribution is 
rather closely tied to (hence cancelled by) the subtraction term from threshold all the way 
to 1 TeV and beyond in the Higgs mass. As a consequence, the “first-order” contribution 
alone provides a good approximation to the true cross-section over much of this range. 
Note that the zeroth order contribution alone can be about twice the true cross-section at 
mt = 40 GeV, and this factor increases to five for mt = 300 GeV. It is obvious that for 
increasingly heavy top quark, the naive parton picture (i.e. the zeroth order term) becomes 
a progressively worse representation of the true physics. 

According to Eq.(12), the observed cancellation results from the fact that, over this 
energy range, the full t-quark distribution function fAt (obtained from solving the QCD 
evolution equation) is well approximated by EA’ (the convolution of the first-order per- 
turbative distribution of the t-quark inside the gluon with the gluon distribution function 
inside the hadron; cf. Eq.(ll)) We show this cancellation in more detail near the threshold 
for a typical case (mt = 80 GeV) in Fig.5. For this calculation, we set the masses of all the 
light quarks (including the b-quark) to zero in both the properly evolved parton distribu- 
tion function and the hard cross-section formula. This allows the physical threshold for 
Higgs production to go down all the way to the top quark mass near which the full and the 
perturbative distribution functions rigorously coincide. The numerical results confirm the 
cancellation mechanism discussed in Sections 1I.D and 1I.F in every detail. 

Although the threshold behavior has been expected on theoretical grounds (a 
detailed discussion has been given, for instance, in Ref.6), the wide range over which the 
near cancellation takes place has not been clearly established previously. Since the contri- 
bution due to the top quark-parton (SIG-O) is almost cancelled by the subtraction term 
(SUBTR), the QCD theory is telling us that over this entire range the top quark is really 
not a “parton”. Effectively, only the subprocess involving the light partons (SIG-l) makes 
a meaningful contribution to the true cross-section. In light of this result, it is natural to 
seek a simple theoretical basis for the effective dominance of the first-order contribution to 
the production cross-section without the redundant cancelling terms. This is done with the 
choice of an alternative renormalization scheme as discussed in Section 1II.C. 

At first glance, it may appear somewhat counter-intuitive that the “first-order cor- 
rection term” in a parton process can yield a much better approximation to the true cross- 
section than the “zeroth-order contribution” (which corresponds to the naive parton model 
expectation). If this holds true over most of the energy scales reported above, it is natural 
to ask: at what energy range and for what heavy parton masses will the “zeroth-order term” 
become truly dominant, and the naive parton picture become a good description of the 
physics? Or, in other words: when will the top quark behave like a parton? The trends 
seen in Figs.(4a-c) suggest that we should look in the region of large s, MH and small mt, 
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as is also obvious from theoretical considerations. We examine a case for the same Js (i.e. 
40 TeV) but artificially small mt. Fig.6 shows the same curves as above, but for the case 
of an assumed top quark mass of 5.0 GeV (just above the bottom mass). Indeed, by going 
to this extreme we see the onset of the naive parton model result. The contribution due to 
the subtraction term steadily moves away from the zeroth order term toward the first-order 
term, and the true cross-section interpolates between the first-order contribution (near the 
threshold) and the zeroth-order contribution (at the high Higgs mass end). These results 
show that even if 5 - 10 GeV quark masses appear small on the scale of Js and &, one 
cannot freely apply the naive parton model formulas for processes initiated by these quarks 
even at the highest energy range planned for SSC. In fact, Fig.6 shows that in the SSC 
energy regime, a 5 GeV quark is neither “light” nor “heavy”: the true cross-section inter- 
polates between the straight parton result (SIG-O) for very large MH and that of a heavy- 
parton (SIG-l) for Mll of the same order as rat. 

In Fig.7 we present a typical plot of the raoiditv distribution of the produced Higgs 
particle, showing the true differential cross-section as well as individual contributions from 
the three perturbative QCD terms described above. The shape of the distribution is very 
similar for all terms; the relative magnitudes at arbitrary y are therefore well represented 
by that at y = 0 as shown in Figs.(4a-c) for a wide range of MH and mt. 

B CANCELLATION OF MASS-SINGULARITIES AND TOP-MASS DEPENDENCE OF 
THE HARD CROSS-SECTION 

Next, we investigate quantitatively the cancellation of mass-singularities between the 
first-order and the subtraction terms and to answer the question: how good is the zero-mass 
approximation for the QCD correction term used in most calculations of this type? (This 
is usually done by applying dimensional regulariaation to the zero-mass theory.) We could 
directly calculate the two terms in Eq.(9) for the hard cross-section as functions of mt and 
examine the mt -+ 0 limit. Instead, we include the hard cross-section in the convolution 
integral for the physical scattering cross-section using fixed parton distribution functions in 
order to compare these results with the zeroth order contribution to the cross-section. The 
latter involves a different parton process, hence cannot be compared with the first-order 
terms quantitatively at the parton cross-section level. 

A typical case is shown in Fig.& The mass of the Higgs particle is 300 GeV and 
the fixed top-quark distribution correspond to EHLQ-set 1.4 The differential cross-section 
at y = 0 is plotted against the variable top quark mass used in the calculation of the hard 
cross-section, Eq.(9). The horizontal line labelled SIG-O is the mass-independent zeroth- 
order contribution. The first-order and the subtraction terms, represented by the dashed 
(SIG-I) and dotted (SUBTR) curves respectively, are seen to rise sharply with decreasing 
mt as expected from their mass-singularities. Their difference, however, approximately 
approaches a constant below mt = IO - 20 GeV. The cancellation of the mass-singularity is 
clearly seen. The solid line labelled as SIG-T is the overall cross-section given by Eq.(lO). 
The horizontal line labelled SIG-MO is the overall cross-section one obtains by using the mt 
= 0 limit of the first-order QCD corrections (i.e. the difference between SIG-I and 
SUBTR). 
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The limiting value of the difference described above corresponds to the /irsf-order 
QCO correcrion to the production cross-section obtainable in a direct zero-mass calculatiort 
(i.e. mt = 0) of that quantity using dimensional regularization techniques5 Since mt # 0, 
one must ask: how reliable is this zero-mass approximation to the cross-section? The 
answer clearly depends on the physical top quark mass which is not known at present 
(except that it is likely to be quite a bit heavier than previously thought). From the graph, 
we can see that the true cross-section is about 30% larger than that obtained with the zero- 
mass method if mt = 80 GeV, and 200% larger if mt = 200 GeV. Similar results are 
obtained for other values of the Higgs mass. 

C. A PRAGMATIC RENORMALIZATION SCHEME WITH NO HEAVY PARTONS - 
ADVANTAGES AND LIMITATIONS 

The results of Sec.1II.A. particularly the near equality of the first-order contribution 
(with physical top quark mass) and the full cross-section over most of the parameter ranges, 
suggest that we seek a theoretical framework in which this result occurs naturally - with- 
out the complication of the other two cancelling terms. In such a framework, calculations 
of the physical cross-section will be considerably simplified. 

This is indeed possible if one takes advantage of the renormalization scheme depen- 
dence of perturbative QCD, and choose a scheme in which the equivalent of the above 
“first-order” term represents the & contribution to the cross-section. Crudely speaking, 
in such a scheme the “heavy quark” will be treated rather differently from the other quark- 
partons. In fact, it will not be considered as a parton at all; any effect due to this heavy 
quark will be calculated explicitly, in contrast to that of the other partons (for which all 
soft physics is summed together and factorized into parton distribution functions). 

Technically, such a scheme can be realized by the following prescription for 
removing divergences in general Feynman diagrams: all diagrams with no “heavy quark” 
lines are regularized by minimal (or MS-bar) subtraction; and all other diagrams by, say, 
BPHZ subtraction.” In order for the simplification mentioned above to occur, this pre- 
scription must be applied to the full range of renormalization scale above the “light quark” 
mass thresholds - including that &gv-e the “heavy quark” mass threshold. This is in con- 
trast to the more conventional schemes lo (such as the one used in the calculations of 
Sec.II1.A) where every quark is turned into an active “parton” somewhere above its mass 
threshold. 

What are the limitations of this simplified scheme? Since Feynman diagrams 
involving the heavy quark are not summed (hence no corresponding distribution function is 
factored out), they must be taken into account individually. Consequently, correction terms 
to the leading contribution (Fig.2b in our example) in this scheme will be of order 
as40g(mt/p) where n is the renormalization scale - rather than os as for corrections to light 
parton contributions. (The logarithm factor, of course, arises from loop subdiagrams.) In 
our problem p = MH. Thus the range of validity of this scheme is limited to the region 
where as.log(mt/p) << 1. This is the same range over which the heavy quark distribution 
in the complete scheme is well approximated by its low-order perturbative expression (e.g. 
fAt and TAt as discussed in Section 1I.D). The numerical results presented in Section 
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1II.A indicate that this covers most the energy range of current interest provided the degree 
of accuracy required is not severe. 

We have performed a numerical calculation of the charged Higgs cross-section in 
this simplified scheme and have compared the results to the complete calculation of 
Sec.II1.A. The appropriate parton distribution functions for this calculation are generated 
separately according to the new renormalization scheme (5 effective parton flavors for all 
energies above the bottom threshold). In order to make the comparison meaningful we use 

a “QCD value which gives the same effective running coupling as as in the conventional 
scheme over the energy range of 5 - 20 GeV - where os has been measured. The gluon 
and bottom distribution functions obtained this way differ slightly from those of the con- 
ventional scheme (by varying amounts, depending on x and Q) due to the absence of the 
top quark-parton in the new scheme. The difference is not significant over the energy 
range of interest, as one may expect (the top distribution is numerically small). Fig.9 shows 
the comparison for the case mt = 80 GeV over the range 85 GeV < MH < 180 GeV. The 
curve labelled NTP-RS is the cross-section from the No-Top-Quark (as “parton”) Renor- 
malization Scheme; the ones labelled SIG-l and SIG-T are the same ones as in Fig.4b from 
the general renormalization scheme. (Note the linear scale here vs. the log scale in Fig.4.) 
The difference between SIG-l and NTP-RS lies between 15 to 25%. The “true cross- 
section” is closer to the NTP-RS curve near threshold, but moves toward SIG-l at higher 

MH. 

We conclude from this exercise that, in the (limited) energy range of up to 1 - 10 
TeV, the simplified renormalization scheme provides a convenient way to estimate cross- 
sections: Fig.9 indicates that the accuracy of using this calculational scheme is in the 
range 20 - 30 %. 

IV. CONCLUSION 

We have presented a systematic study of the production of charged Higgs particle in 
the framework of the QCD-based parton model. A number of general issues pertaining to 
new processes initiated by heavy quark-partons have been examined in detail. For energy 
scales up to a few TeV, a top quark of mass above, say, 20 GeV largely behaves like a 
heavy partide, hence is more naturally treated distinctly from the partons of the conven- 
tional perturbative QCD formalism. The quantitative analysis of the cancellation of the 
heavy parton contribution by the subtraction term and the discussion of the alternative 
renormalization scheme without the heavy parton provide the theoretical bases for this in- 
creasingly recognized pragmatic approach to heavy particle production. We have also 
examined the cancellation of mass singularities between the first order QCD correction 
terms to the parton model formula. This calculation allowed an assessment of the reliability 
of the often used zero-mass method for evaluating the QCD correction to this type of 
processes. 
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Fig.1 Graphical representation of the Factorization Theorem of QCD which provides the 
theoretical basis of the Parton Model. 
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Fig.2 Partonic processes contributing to the production of charged Higgs particle 
production: (a) zemh order. (b) and (c) /irsl order in the QCD coupling. 

Fig.3 Graphical representation of the first-order QCD sub~acfion term to the hard 
scattering. The intermediate t-quark line is on-the-mass-shell and collinear to the 
gluon line. 
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